Constructions of Turan systems that are tight up to a multiplicative constant

> Oleg Pikhurko University of Warwick

> > 28 November 2024

Turán systems

$$
\blacktriangleright \ G \subseteq \binom{V}{r} \text{ is a Turán } (s, r)\text{-system:}
$$

$$
\forall X \in \binom{V}{s} \ \exists Y \in G \quad Y \subseteq Z
$$

\n- $$
r
$$
-graph that covers all s -sets
\n- $\mathcal{T}(n, s, r) := \min \left\{ |G| : \text{Turán } (s, r)$ -system $G \subseteq \binom{[n]}{r} \right\}$
\n- $\mathcal{T}(n, s, r) = \binom{n}{r} - \text{ex}(n, K_s^r)$
\n- $\text{Density } t(s, r) := \lim_{n \to \infty} \frac{T(n, s, r)}{\binom{n}{r}} = 1 - \pi(K_s^r)$
\n

$r \leqslant 2$

►
$$
T(n, s, 1) = n - s + 1
$$

\n► $t(s, 1) = 1$
\n► Mantel'1907: $T(n, 3, 2) = {ln/2} + {ln/2} \choose 2}$
\n► $t(3, 2) = \frac{1}{2}$
\n► Turán'41: $T(n, s, 2)$ is attained by $s - 1$ cliques
\n► $t(s, 2) = \frac{1}{s-1}$

The Tetrahedron Problem

$$
\blacktriangleright \hspace{.15cm} t(4,3) \leqslant \tfrac{4}{9}
$$

- \triangleright Turán: Is $T(n, 4, 3)$ attained by the 3-part construction ?
- ▶ Katona-Nemetz-Simonovits'64, de Caen'88, Chung-Lu'99, Razborov'10: $t(4, 3) \ge 0.43833...$
- \triangleright Brown'83: other constructions
- I Kostochka'82, Fon-der-Flaas'88, Frohmader'08: ⇒ exponentially many non-isomorphic extremal 3-graphs
- ► Fon-der-Flaas'88: G (digraph D) := { $X \in \binom{V}{3}$ $\binom{V}{3}$: $D[X]$ has a vertex of degree 0 or out-degree 2 }. If D has no induced directed 4-cycle then G is a $(4, 3)$ -Turán system.
- ▶ Razborov'11: $|G(D)| \geq (\frac{4}{9} + o(1))\binom{n}{3}$ $\binom{n}{3}$ if \overline{D} is complete multipartite or has density $\geqslant \frac{2}{3}-\varepsilon$, some constant $\varepsilon > 0$

Turán $(s, 3)$ -systems

$$
\blacktriangleright \hspace{.15cm} t(s,3) \leqslant \tfrac{4}{(s-1)^2}
$$

$$
\blacktriangleright \hspace{0.2cm} \mathcal{T}(n,5,3) \leqslant {\binom{\lfloor n/2 \rfloor}{3}} + {\binom{\lceil n/2 \rceil}{3}}
$$

- \triangleright Conjecture (Ringel'64, Turán'70): this is equality
- \triangleright Surányi'71, Kostochka, Sidorenko'83: false for odd $n \geqslant 9$
- ► Conjecture: $t(s, 3) = \frac{4}{(s-1)^2}$
- \blacktriangleright Razborov'10:
	- ▶ $t(5, 3) \ge 0.230...$ (≤ 0.25)
	- $t(6, 3) \geqslant 0.141... \leqslant 0.16$

▶ Giraud'90, Markström'09: $\frac{5}{16} = 0.325 \geq t(5, 4) \geq 0.263...$

- ► Erdős: \$500 for determining $t(s, r)$, some $s > t \geq 3$
- \triangleright Sidorenko'95: No "plausible conjecture" in other cases

Lower bounds for $r \geq 4$

- Double counting: $t(r+1,r) \geq \frac{1}{r+1}$ $r+1$
- ▶ Sidorenko'82, de Caen'83, Tazawa-Shirakura'83; $t(r+1,r) \geqslant \frac{1}{r}$ r
- Chung-Lu'99: $t(r + 1, r) \geq \frac{1}{r} + \frac{1}{r^2}$ $\frac{1}{r^2} + O(\frac{1}{r^3})$ $\frac{1}{r^3}$), odd *r*
- **Lu-Zhao'09:** $t(r + 1, r) \ge \frac{1}{r} + \frac{1}{2r}$ $\frac{1}{2r^3} + O(\frac{1}{r^4})$ $\frac{1}{r^4}$), $r \equiv 4 \mod 6$
- Double counting: $t(s, r) \geqslant \binom{s}{r}$ $\binom{s}{r}^{-1}$
- **If** Spencer'72: improved for $s \gg r$
- ► De Caen'83: $t(s, r) \geqslant {s-1 \choose r-1}$ $\left[\begin{smallmatrix} s-1 \ r-1 \end{smallmatrix}\right]^{-1}$

Upper bounds as $r \to \infty$

► Frankl-Rödl'85: $\forall \rho$ ($\int_{r}^{r+\rho}$ $\mathcal{L}^{+\rho}_{r})\cdot t(r+\rho,r)\lessapprox \rho(\rho+4)$ ln r \blacktriangleright P. \geqslant 24: $\forall \rho$ $\binom{r+\rho}{r}$ $r^{+\rho\choose r}\cdot t(r+\rho,r)\leqslant \mu_\rho+o(1)$ $\blacktriangleright \forall \rho \geqslant \rho_0$ $\mu_\rho \leqslant \rho \ln \rho + 3 \rho \ln \ln \rho$

Connections to coding theory

- \blacktriangleright Alphabet Q of size q
- ► $C \subseteq Q^d$ is a ρ -insertion code if $\forall X \in Q^{d+\rho}$ $\exists Y \in C$ st X is Y plus ρ new symbols
- ► Each $Y \in Q^d$ gives $V^q(d,\rho) := \sum_{i=0}^d \binom{d+\rho}{i}$ $i^{(\rho)}(q-1)^i$ words $X \in Q^{d+\rho}$
- \blacktriangleright Lenz-Rashtchian-Siegel-Yaakobi'21: $\forall \rho \; \forall d \gg \rho$

$$
\min |C| \leqslant (\mathrm{e} + o(1))\rho \ln \rho \, \frac{q^{d+\rho}}{V^q(d,\rho)}
$$

- ▶ Cooper-Ellis-Kahng'02, Krivelevich-Sudakov-Vu'03 \blacktriangleright Take $d \ll d$
	- $\blacktriangleright \{x_1, \ldots, x_d\} \mapsto \text{all permutations of } (x_1, \ldots, x_d)$
	- \blacktriangleright r = d, n = a
	- \triangleright Turán (r + ρ , r)-system \mapsto symmetric ρ -insertion code
	- \blacktriangleright Idea: "symmetrise" construction of good codes
	- \triangleright P.-Verbitsky-Zhukovskii' \geqslant 24: new lower bounds on 1-insertion codes (for $d \ll q$)

High-level ideas for $(r + 1, r)$ -Turán systems

\blacktriangleright Recursion

- \blacktriangleright Fix $k < r$
- \triangleright Include $\{x_1 < \cdots < x_r\}$ depending on $\{x_1, \ldots, x_{k-1}\}$ ▶ Random choice for $\{x_1, \ldots, x_{k-1}\}$ (iid biased coins) \triangleright For each "unhappy" *k*-set Y apply recursion on *r*-sets that start with Y

Formal proof

► Global constants μ , ϵ , β Prove $T(n, r + 1, r) \leq \frac{\mu}{r+1} {n \choose r}$ $\binom{n}{r}$ by induction on r and n ► $r \leq \mu - 1$: take $G'_n = \binom{[n]}{r}$ $\binom{n}{r}$ \blacktriangleright r > μ - 1: \blacktriangleright k := βr \triangleright $S: \frac{c}{k}$ $\frac{c}{k}$ -random subset of $\binom{[n]}{k-1}$ $\binom{[n]}{k-1}$ ► $S^* := S \otimes K_*^{r-k+1} = \bigcup_{Y \in S} \{ Y \cup Z : Z \in \binom{[\max Y + 1, n]}{r-k+1} \}$ $\binom{2k+1}{r-k+1}$ Extend each $Y \in S$ to the right to all possible r-sets \blacktriangleright $\top := \{ Y \in \binom{[n]}{k} \}$ $\binom{n}{k}$: $\binom{Y}{k-1} \cap S = \emptyset$ ► $T^* := T \otimes G_*^{r-k} = \bigcup_{Y \in T} \{ Y \cup Z : Z \in G_{n-m}^{r-k} \}$ $\binom{n-\kappa}{n-\max Y}$ ► Extend each $Y \in T$ by Turán $(r - k + 1, r - k)$ -system ► Claim: $G_n^r := S^* \cup T^*$ is a Turán $(r + 1, r)$ -system

Expected size of G_n^r n

\n- ▶ S:
$$
\frac{c}{k}
$$
-random subset of $\binom{[n]}{k-1}$
\n- ▶ S* := S $\otimes K^{r-k+1}$
\n- ▶ $\mathbb{E}|S^*| = \frac{c}{k} \binom{n}{r}$
\n- ▶ T := {Y \in \binom{[n]}{k} : \binom{Y}{k-1} \cap S = \emptyset}
\n- ▶ T* := T $\otimes G^{r-k}$
\n

$$
\mathbb{E}|T^*| = \sum_{y=k}^n \left(1 - \frac{c}{k}\right)^k {y-1 \choose k-1} \cdot |G_{n-y}^{r-k}|
$$

\$\leqslant \sum_{y=k}^n e^{-c} {y-1 \choose k-1} \cdot \frac{\mu}{r-k+1} {n-y \choose r-k} = \frac{e^{-c}\mu}{r-k+1} {n \choose r}

Choosing appropriate constants

• Need (for all
$$
r \ge \mu - 1
$$
 with $k = \beta r$)

$$
\frac{c}{k} + \frac{\mathrm{e}^{-c}\mu}{r - k + 1} \leqslant \frac{\mu}{r + 1}
$$

\n- E.g.
$$
\beta := \frac{1}{2}
$$
, $c := 1$, large μ works
\n- Large $r \ge r_0$:
\n- Enough
\n

$$
\frac{c}{\beta} + \frac{\mathrm{e}^{-c}}{1-\beta} \, \mu < \mu
$$

 \triangleright $\beta = 0.715$, $c = 2.51$ \Rightarrow $\mu = 4.911$ suffices Prove by induction on r and n that

$$
T(n,r+1,r) \leqslant \left(\frac{\mu}{r+1} + \frac{D}{r\ln(r+3)}\right) \binom{r+\rho}{r}^{-1} \binom{n}{r}
$$

Lower bounds on $t(r + \rho, r)$

\n- ▶ S:
$$
c / \binom{k}{\rho}
$$
-random subset of $\binom{n}{k-\rho}$
\n- ▶ S^{*} := S $\otimes K^{r-k+\rho}_*$
\n- ▶ T := {Y \in \binom{[n]}{k} : \binom{Y}{k-\rho} \cap S = \emptyset}
\n- ▶ T^{*} := Y $\otimes G^{n-k}_*$
\n- ▶ G^r := S^{*} ∪ T^{*}
\n- ▶ Turán (r + \rho, r)-system
\n- ▶ Need: $\frac{c}{\beta \rho} + \frac{e^{-c}}{(1-\beta)\rho} \mu < \mu$
\n- ▶ $\mu := \frac{(c+1)^{\rho+1}}{c^{\rho}}$ where c is max root of $e^c = (c+1)^{\rho+1}$
\n- ▶ $\rho \ln \rho < c \leq \rho \ln \rho + 2\rho \ln \ln \rho$ for $\rho \geq \rho_0$
\n- ▶ $\mu < \rho \ln \rho + 3\rho \ln \rho$ for all large ρ
\n

Open problems

\n- ■ Is
$$
t(r + 1, r) = (1 + o(1)) \frac{1}{r}
$$
?
\n- ■ If H_m^r : r -graph with $r + 1$ vertices and m edges.
\n- ■ If $H_{r+1}^r = K_{r+1}^r$ so $\pi(H_{r+1}^r) = 1 - t(r + 1, r)$.
\n- ■ If $H_r^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\n- ■ If $H_s^r = 0$ if $i = 1, 2$.
\

Thank you!